Semantic search over 5,224 EA Connect 2025 attendees
A networking tool for EA Connect 2025. Uses vector embeddings and LLM reranking to help you find the right people among 5,224 attendees (1,786 with rich profiles).
# Or run manually:
uv venv && source .venv/bin/activate
uv pip install sqlite-vec requests
python ea_connect.py search "funders interested in AI safety"
python ea_connect.py find --interest "biosecurity" --funding
python ea_connect.py stats
-- SQLite with sqlite-vec for vector search
CREATE TABLE attendees (
id TEXT PRIMARY KEY,
name TEXT, role TEXT, organization TEXT,
about TEXT, event_goals TEXT, can_help_with TEXT,
country TEXT, has_funding BOOLEAN,
is_mentor BOOLEAN, is_speaker BOOLEAN,
seeking_collaborators BOOLEAN, profile_url TEXT
);
CREATE TABLE interests (attendee_id TEXT, interest TEXT);
CREATE TABLE expertise (attendee_id TEXT, skill TEXT);
CREATE VIRTUAL TABLE vec_embeddings USING vec0(
attendee_id TEXT PRIMARY KEY,
embedding FLOAT[3072]
);